5 research outputs found

    Public Transit Arrival Prediction: a Seq2Seq RNN Approach

    Full text link
    Arrival/Travel times for public transit exhibit variability on account of factors like seasonality, dwell times at bus stops, traffic signals, travel demand fluctuation etc. The developing world in particular is plagued by additional factors like lack of lane discipline, excess vehicles, diverse modes of transport and so on. This renders the bus arrival time prediction (BATP) to be a challenging problem especially in the developing world. A novel data-driven model based on recurrent neural networks (RNNs) is proposed for BATP (in real-time) in the current work. The model intelligently incorporates both spatial and temporal correlations in a unique (non-linear) fashion distinct from existing approaches. In particular, we propose a Gated Recurrent Unit (GRU) based Encoder-Decoder(ED) OR Seq2Seq RNN model (originally introduced for language translation) for BATP. The geometry of the dynamic real time BATP problem enables a nice fit with the Encoder-Decoder based RNN structure. We feed relevant additional synchronized inputs (from previous trips) at each step of the decoder (a feature classically unexplored in machine translation applications). Further motivated from accurately modelling congestion influences on travel time prediction, we additionally propose to use a bidirectional layer at the decoder (something unexplored in other time-series based ED application contexts). The effectiveness of the proposed algorithms is demonstrated on real field data collected from challenging traffic conditions. Our experiments indicate that the proposed method outperforms diverse existing state-of-art data-driven approaches proposed for the same problem

    Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network

    Get PDF
    Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation, oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific interaction paths that amplify the pluripotency signal

    Neonatal drug withdrawal

    No full text
    Maternal use of certain drugs during pregnancy can result in transient neonatal signs consistent with withdrawal or acute toxicity or cause sustained signs consistent with a lasting drug effect. In addition, hospitalized infants who are treated with opioids or benzodiazepines to provide analgesia or sedation may be at risk for manifesting signs of withdrawal. This statement updates information about the clinical presentation of infants exposed to intrauterine drugs and the therapeutic options for treatment of withdrawal and is expanded to include evidence-based approaches to the management of the hospitalized infant who requires weaning from analgesics or sedatives. Copyright © 2012 by the American Academy of Pediatrics
    corecore